nip.timing.models.ModelTimeable#
- class nip.timing.models.ModelTimeable(*, param_scale: float = 1.0, force_cpu: bool = False, batch_size: int = 64, num_batches: int = 100)[source]#
Base class for a timeable that runs a model.
To subclass, define the class attributes below.
- Parameters:
param_scale (float, default=1.0) – Scale factor for key default parameters (currently unused)
force_cpu (bool, default=False) – Whether to force the model to run on the CPU, even if a GPU is available.
batch_size (int, default=64) – The batch size to use for the model.
num_batches (int, default=100) – The number of batches to run the model on.
- scenario#
The scenario which defines the model architecture and datasets.
- Type:
ClassVar[ScenarioType]
Methods Summary
__init__
(*[, param_scale, force_cpu, ...])Get the parameters which define the experiment containing the model.
_get_profiler_args
(log_dir, record_shapes, ...)Get the arguments for the PyTorch profiler.
run
(profiler)Run the model.
time
([log_dir, record_shapes, ...])Time the action.
Attributes
Methods
- __init__(*, param_scale: float = 1.0, force_cpu: bool = False, batch_size: int = 64, num_batches: int = 100)[source]#
- _get_params() HyperParameters [source]#
Get the parameters which define the experiment containing the model.
- Returns:
hyper_params (HyperParameters) – The parameters of the experiment.
- _get_profiler_args(log_dir: str | None, record_shapes: bool, profile_memory: bool, with_stack: bool) dict [source]#
Get the arguments for the PyTorch profiler.
- Parameters:
log_dir (str or None) – The directory to save the profiling results to, if any.
record_shapes (bool) – Whether to record tensor shapes. This introduces an additional overhead.
profile_memory (bool) – Whether to profile memory usage.
with_stack (bool) – Whether to record the stack trace. This introduces an additional overhead.
- Returns:
profiler_args (dict) – The arguments for the PyTorch profiler.
- run(profiler: profile)[source]#
Run the model.
- Parameters:
profiler (torch.profiler.profile) – The profiler to run the model with.
- time(log_dir: str | None = None, record_shapes: bool = True, profile_memory: bool = True, with_stack: bool = False) profile [source]#
Time the action.
- Parameters:
log_dir (str, optional) – The directory to save the profiling results to, if any.
record_shapes (bool) – Whether to record tensor shapes. This introduces an additional overhead.
profile_memory (bool) – Whether to profile memory usage.
with_stack (bool) – Whether to record the stack trace. This introduces an additional overhead.
- Returns:
profiler (torch.profiler.profile) – The PyTorch profiler containing the timing information.